Skip to main content

Recombinant Human VEGF 165 GMP Protein, CF GMP

R&D Systems, part of Bio-Techne | Catalog # BT-VEGF-GMP

Animal-Free
R&D Systems, part of Bio-Techne
Catalog #
Availability
Size / Price
Qty
Loading...
BT-VEGF-GMP-01M
BT-VEGF-GMP-050

Key Product Details

  • VEGF Manufactured in Bio-Techne's new GMP facility
  • Lot-to-lot consistency
  • Stringent guidelines for patient safety
  • Scalability necessary to support successful therapeutics
  • Learn more about manufacturing in our new GMP facility
  • Test it in your process! Request a sample of GMP VEGF

Source

E. coli

Accession #

Structure / Form

Disulfide-linked homodimer

Conjugate

Unconjugated

Applications

Bioactivity

Product Specifications

Source

E. coli-derived human VEGF protein
Ala27 - Arg191
Produced using non-animal reagents in an animal-free laboratory.Manufactured and tested under cGMP guidelines.

Purity

>97%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining. The molecular weight by TCEP reduced mass spectrometry is 19282 ± 10 Da and 19080 Da ± 10 Da, and is free of unexpected mass peaks.

Endotoxin Level

<0.01 EU per 1 μg of the protein by the LAL method.

N-terminal Sequence Analysis

Met-Ala27-Pro-Met-Ala-Glu-Gly-Gly-Gly-Gln

Pro28-Met-Ala-Glu-Gly-Gly-Gly-Gln-Asn-His

Predicted Molecular Mass

19.2 kDa (monomer)

SDS-PAGE

19 - 21 kDa, under reducing conditions.

Activity

Measured in a cell proliferation assay using HUVEC human umbilical vein endothelial cells. Conn, G. et al. (1990) Proc. Natl. Acad. Sci. USA 87:1323.
The ED50 for this effect is 1.50-12.0 ng/mL.
The specific activity of recombinant human VEGF165 is > 8.0 x 105 units/mg, which is calibrated against the human VEGF165 WHO standard (NIBSC code: 02/286).

Host Cell Protein

<0.100 ng per μg of protein when tested by ELISA.

Mycoplasma

Negative when tested in a ribosomal RNA hybridization assay.

Host Cell DNA

<0.00150 ng per µg of protein when tested by PCR.

Scientific Data Images for Recombinant Human VEGF 165 GMP Protein, CF

Recombinant Human VEGF 165 GMP Protein Bioactivity.

GMP-grade Recombinant Human VEGF 165 (Catalog # BT-VEGF-GMP) as measured in a cell proliferation assay using HUVEC human umbilical vein endothelial cells. The ED50 for this effect is 1.50-12.0 ng/mL. Three independent lots were tested for activity and plotted on the same graph to show lot-to-lot consistency of GMP VEGF 165.

Equivalent Bioactivity of GMP and Animal-Free grades of Recombinant Human VEGF 165.

Equivalent bioactivity of GMP (Catalog # BT-VEGF-GMP) and Animal-Free (BT-VEGF-AFL) grades of Recombinant Human VEGF 165 as measured in a cell proliferation assay using HUVEC human umbilical vein endothelial cells (orange and green, respectively).

Recombinant Human VEGF 165 GMP Protein SDS-PAGE

2 μg/lane of Recombinant Human VEGF 165 GMP Protein (Catalog # BT-VEGF-GMP) was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized by Coomassie® Blue staining, showing bands at 19-21 kDa.

Formulation, Preparation and Storage

BT-VEGF-GMP
Formulation Lyophilized from a 0.2 μm filtered solution in Sodium Acetate.
Reconstitution Reconstitute at 500 μg/mL in sterile deionized water.
Shipping The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • A minimum of 12 months when stored at ≤ -20 °C as supplied. Refer to lot specific COA for the Use by Date.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, ≤ -20 °C under sterile conditions after reconstitution.

Background: VEGF

Vascular endothelial growth factor (VEGF or VEGF-A), also known as vascular permeability factor (VPF), is a potent mediator of both angiogenesis and vasculogenesis in the fetus and adult (1-3). It is a member of the PDGF family that is characterized by the presence of eight conserved cysteine residues and a cystine knot structure (4). Humans express alternately spliced isoforms of 121, 145, 165, 183, 189, and 206 amino acids (aa) in length (4). VEGF165 appears to be the most abundant and potent isoform, followed by VEGF121 and VEGF189 (3, 4). Isoforms other than VEGF121 contain basic heparin-binding regions and are not freely diffusible (4). Human VEGF165 shares 88% aa sequence identity with corresponding regions of mouse and rat, 96% with porcine, 95% with canine, and 93% with feline, equine and bovine VEGF, respectively. VEGF binds the type I transmembrane receptor tyrosine kinases VEGF R1 (also called Flt-1) and VEGF R2 (Flk-1/KDR) on endothelial cells (4). Although VEGF affinity is highest for binding to VEGF R1, VEGF R2 appears to be the primary mediator of VEGF angiogenic activity (3, 4). VEGF165 binds the semaphorin receptor, Neuropilin-1 and promotes complex formation with VEGF R2 (5). VEGF is required during embryogenesis to regulate the proliferation, migration, and survival of endothelial cells (3, 4). In adults, VEGF functions mainly in wound healing and the female reproductive cycle (3). Pathologically, it is involved in tumor angiogenesis and vascular leakage (6, 7). Circulating VEGF levels correlate with disease activity in autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and systemic lupus erythematosus (8). VEGF is induced by hypoxia and cytokines such as IL-1, IL-6, IL-8, oncostatin M and TNF-alpha (3, 4, 9).

Due to its role in angiogenesis of blood vessels, tumor and stroma cells use VEGF to stimulate formation of blood vessels and the proliferation and survival of endothelial cells. Specific immunotherapies targeting the VEGF signaling pathway include the recombinant antibody against VEGF (Bevacizumab), antibodies targeting the main VEGF receptor (VEGFR2), and small molecule inhibitors against VEGF receptor tyrosine kinases (10). Immune checkpoint inhibitors are an important tool in cancer therapies as tumor cells can hijack immune checkpoint signals to evade detection by immune cells. In addition to stimulating the formation of tumor blood vessels, VEGF has immunosuppressive effects by acting on dendritic cells to block their antigen-presenting and T cell stimulatory functions. Targeting VEGF in combination with other immune checkpoint ligands or receptors may prove more effective in immunotherapy approaches to certain cancer types (11). Because of its role in the formation of blood vessels, VEGF is also an important factor in skeletal development where blood supply and vascularization are crucial. This has made VEGF an important molecule in regenerative studies for bone repair as sustained release of VEGF has been shown to improve the efficiency of bone regeneration (12).

In differentiation protocols for stems cells, VEGF is a commonly added growth factor for the transformation of induced pluripotent stem cells into hematopoietic progenitor cells used to make Natural Killer cells (13, 14). VEGF has also been used to transform intermediate mesoderm into kidney glomerular podocytes or stem cell-derived liver spheres (15, 16). VEGF may also be used in assistance of stem cell transplantations by supporting angiogenesis at sites of stem cell transplants or as a honing tool for adipose-derived mesenchymal stem cells or bone marrow stem cells to migrate to (17, 18).

References

  1. Leung, D.W. et al. (1989) Science 246:1306.
  2. Keck, P.J. et al. (1989) Science 246:1309.
  3. Byrne, A.M. et al. (2005) J. Cell. Mol. Med. 9:777.
  4. Robinson, C.J. and S.E. Stringer (2001) J. Cell. Sci. 114:853.
  5. Pan, Q. et al. (2007) J. Biol. Chem. 282:24049.
  6. Weis, S.M. and D.A. Cheresh (2005) Nature 437:497.
  7. Thurston, G. (2002) J. Anat. 200:575.
  8. Carvalho, J.F. et al. (2007) J. Clin. Immunol. 27:246.
  9. Angelo, L.S. and R. Kurzrock (2007) Clin. Cancer Res. 13:2825.
  10. Apte, R.S. et al. (2019) Cell 176:1248.
  11. Sangro, B. et al. (2021) Nature 18:525.
  12. Hu, K. & Olsen, B.R. (2016) Bone 91:30.
  13. Zhou, Y. et al. (2022) Cancers 14:2266.
  14. Li, Y. et al. (2018) Cell Stem Cell. 23:181.
  15. Musah, S. et al. (2018) Nat. Protoc. 13:1662.
  16. Meseguer-Ripolles, J. et al. (2021) STAR Protoc. 2:100502.
  17. Hutchings, G. et al. (2020) Int. J. Mol. Sci. 21:3790.
  18. Zhang, W. et al. (2014) Eur. Cell. Mater. 27:1.

Long Name

Vascular Endothelial Growth Factor

Alternate Names

MVCD1, VAS, Vasculotropin, VEGF-A, VEGFA, VPF

Entrez Gene IDs

7422 (Human); 22339 (Mouse); 83785 (Rat); 281572 (Bovine); 403802 (Canine); 493845 (Feline); 30682 (Zebrafish)

Gene Symbol

VEGFA

UniProt

Additional VEGF Products

Product Documents for Recombinant Human VEGF 165 GMP Protein, CF

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Note: Certificate of Analysis not available for kit components.

Manufacturing Specifications

GMP Proteins
R&D Systems, a Bio-Techne Brand's GMP proteins are produced according to relevant sections of the following documents: USP Chapter 1043, Ancillary Materials for Cell, Gene and Tissue-Engineered Products and Eu. Ph. 5.2.12, Raw Materials of Biological Origin for the Production of Cell-based and Gene Therapy Medicinal Products. 

R&D Systems' quality focus includes:

  • Manufactured and tested under an ISO 9001:2015 and ISO 13485:2016 certified quality system
  • Documented processes and QA control of documentation and process changes
  • Personnel training programs
  • Raw material testing and vendor qualification/monitoring
  • Fully validated equipment, processes and test methods
  • Equipment calibration schedules using a computerized calibration program
  • Facility maintenance, safety programs and pest control
  • Material review process for variances
  • Monitoring of stability over product shelf-life

R&D Systems strives to provide our customers with the analytical characteristics of each product so that customers may determine whether our products are appropriate for their research. The Certificate of Analysis provided contains the following lot specific information:

  • N-terminal amino acid analysis, SDS-PAGE analysis, and endotoxin level (as determined by LAL assay) performed on each bulk QC lot, not on individual bottlings of each QC lot
  • Post-bottling lot-specific bioassay results (compliance with an established range) and results of microbial testing according to USP
  • Host Cell Protein testing performed by ELISA
  • Mycoplasma testing by ribosomal RNA hybridization assay

Additional testing and documentation requested by the customer can be arranged at an additional cost.

Production records and facilities are available for examination by appropriate personnel on-site at R&D Systems in Minneapolis, Minnesota USA.

R&D Systems sells GMP grade products for preclinical or clinical ex vivo use. They are not for in vivo use. Please read the following End User Terms prior to using this product.


Animal-Free Manufacturing Conditions
Our dedicated controlled-access animal-free laboratories ensure that at no point in production are the products exposed to potential contamination by animal components or byproducts. Every stage of manufacturing is conducted in compliance with R&D Systems' stringent Standard Operating Procedures (SOPs). Production and purification procedures use equipment and media that are confirmed animal-free.

Production

  • All molecular biology procedures use animal-free media and dedicated labware.
  • Dedicated fermentors are utilized in committed animal-free areas.

Purification

  • Protein purification columns are animal-free.
  • Bulk proteins are filtered using animal-free filters.
  • Purified proteins are stored in animal-free containers in a dedicated cold storage room.

Quality Assurance

  • Low Endotoxin Level.
  • No impairment of biological activity.
  • High quality product obtained under stringent conditions.

Please read our complete Animal-Free Statement.

Product Specific Notices for Recombinant Human VEGF 165 GMP Protein, CF


END USER TERMS OF USE OF PRODUCT

The following terms are offered to you upon your acceptance of these End User Terms of Use of Product. By using this product, you indicate your acknowledgment and agreement to these End User Terms of Use of Product. If you do not agree to be bound by and comply with all of the provisions of these End User Terms of Use of Product, you should contact your supplier of the product and make arrangements to return the product.

We suggest you print and retain a copy of these End User Terms of Use of Product for your records.

The End User is aware that R&D Systems, Inc. sells GMP products for preclinical or clinical ex vivo use and not for in vivo use. The End User further agrees, as a condition of the sale of R&D Systems' GMP products that: a) the End User will not use this GMP Product in any procedure wherein the product may be directly or indirectly administered to humans, unless the End User has obtained, or prior to their use will have obtained, an Investigational New Drug (IND) exemption from the FDA and will use the product only in accordance with the protocols of such IND and of the Institutional Review Board overseeing the proposed research, or b) the End User will use the products outside of the United States in accordance with the protocols of research approved by the Institutional Review Board or authorized ethics committee and regulatory agencies to which the End User is subject to in their territory.

R&D Systems, Inc. has the right, at its sole discretion, to modify, add or remove any terms or conditions of these End User Terms of Use without notice or liability to you. Any changes to these End User Terms of Use are effective immediately following the printing of such changes on this product insert. The most recent version of these End User Terms of Use of Product may be found at: RnDSystems.com/Legal.

You agree to review these End User Terms of Use of Product to ensure any subsequent use by you of R&D Systems' GMP Products following changes to these End User Terms of Use of Product constitutes your acceptance of all such changes.

TERMS AND CONDITIONS

The following limitation applies to R&D Systems' warranty and liability for damages: All products are warranted to meet R&D Systems' published specifications when used under normal laboratory conditions.

R&D SYSTEMS DOES NOT MAKE ANY OTHER WARRANTY OR REPRESENTATION WHATSOEVER, WHETHER EXPRESS OR IMPLIED, WITH RESPECT TO ITS PRODUCTS. IN PARTICULAR, R&D SYSTEMS DOES NOT MAKE ANY WARRANTY OF SUITABILITY, NONINFRINGEMENT, MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

NOTWITHSTANDING ANY OTHER PROVISIONS OF THESE TERMS AND/OR ANY OTHER AGREEMENT BETWEEN R&D SYSTEMS AND PURCHASER FOR THE PURCHASE OF THE PRODUCTS, R&D SYSTEMS' TOTAL LIABILITY TO PURCHASER ARISING FROM OR IN RELATION TO THESE TERMS, AN AGREEMENT BETWEEN THE PARTIES OR THE PRODUCTS, WHETHER ARISING IN CONTRACT, TORT OR OTHERWISE SHALL BE LIMITED TO THE TOTAL AMOUNT PAID BY PURCHASER TO R&D SYSTEMS FOR THE APPLICABLE PRODUCTS. IN NO EVENT WILL R&D SYSTEMS BE LIABLE FOR THE COST OF PROCUREMENT OF SUBSTITUTE GOODS.

Full details of R&D Systems' Terms and Conditions of Sale can be found online at: RnDSystems.com/Legal.

For preclinical, or clinical ex vivo use

Loading...
Loading...
Loading...
Loading...